CONSIDERATION OF CHARACTERS OF THE CONTROL OF THE C

CENTRO UNIVERSITARIO DE LOS ALTOS

División de Ciencias Agropecuarias e Ingenierías

Departamento de Ciencias Pecuarias y Agrícolas Departamento de Ingenierías

1. Identificación del curso

		Algo	ritmos n	netaheur	ísticos		
Programa educativo			Departamento de adscripción				
Ingeniería en Computación			Departamento de Ingenierías				
Área de formación			Tipo de Unidad de Aprendizaje				
Básica particular obligatoria			Curso - Taller				
Carga horaria			Créditos C			Clave	
Teoría	40	Práctica	40	Total	80	8	IL382
Modalidad de Enseñanza - Aprendizaje		Prerrequisito					
Presencial			Inteligencia artificial				
Academia			Profesor responsable				
Ciencias Computacionales			Roberto Plascencia Jiménez				
Elaboró / Modificó			Fecha de elaboración / modificación				
Roberto Plascencia Jiménez			20 de mayo de 2025				

2. Competencias que abonan al perfil de egreso

Transversal	Disciplinar	Profesional
Aplica los principios matemáticos y técnicas básicas de la programación paralela, concurrente, distribuida y de tiempo real, para el desarrollo de un sistema de software. Diseñar sistemas de software y de información, implementando arquitecturas, infraestructuras y características de seguridad, para dar solución a problemáticas reales. Aplicar diversas arquitecturas de computadoras, para implementar soluciones integrales en sistemas computacionales.	Conoce estrategias de gestión de información para su selección, asimilación y exposición Posee habilidades de aprendizaje autogestivo que le permita incrementar sus conocimientos en distintas áreas de interés Reconoce sus responsabilidades éticas y profesionales para actuar con rigor en su desarrollo como ingeniero	Posee capacidad de razonamiento crítico, lógico y matemático para resolver problemas dentro de su área de estudio a través de modelos abstractos que reflejen situaciones reales Posee saberes, conceptos, principios y teorías relacionadas a las ciencias computacionales y a sus disciplinas afines Conoce y aplica de forma apropiada procedimientos, paradigmas y herramientas para el desarrollo de sistemas de software, de información o bases de datos

3. Saberes previos

Introducción a la inteligencia artificial y problemas de optimización, incluyendo aprendizaje automático y metaheurísticas. Desarrollo de habilidades para investigar, analizar datos y comprender textos técnicos.

4. Presentación de la unidad de aprendizaje

Unidad de aprendizaje proporciona al Perfil de Egresado los conocimientos y habilidades necesarias para diseñar y desarrollar software de aplicación de Algoritmos Metaheurísticos para la solución de problemas de optimización.

5. Objetivo de aprendizaje

El alumno aplica algoritmos metaheurísticos para resolver problemas de optimización multidimensional de manera eficaz.

6. Competencia general de la unidad de aprendizaje

CG.CI.182 Conocimiento y aplicación de los principios fundamentales y técnicas básicas de los sistemas inteligentes y su aplicación práctica. (BOE/SFIA CG.CI.182)

CENTRO UNIVERSITARIO DE LOS ALTOS

División de Ciencias Agropecuarias e Ingenierías

Departamento de Ciencias Pecuarias y Agrícolas Departamento de Ingenierías

7. Habilidades, valores y actitudes

Identifica la contribución de los algoritmos evolutivos a la inteligencia artificial. Resolución de problemas que le permita encontrar soluciones a distintos niveles por medio de sus conocimientos especializados.

8. Elementos de competencia

Bloque No. I: Optimización con técnicas heurísticas y algoritmos metaheurísticos

Sub-competencia

Aplica técnicas de optimización y algoritmos metaheurísticos para resolver problemas complejos, seleccionando y ajustando variantes de algoritmos evolutivos y parámetros adecuados.

Cognitivos (Contenido)

- 1. Optimización y técnicas heurísticas.
- 2. Algoritmos metaheurísticos.
- 3. Variantes de algoritmos evolutivos.
- 4. Parámetros.
- 5. Algoritmos Genéticos (GA).

Procedimentales

El estudiante resuelve ejercicios relacionados con los diferentes tipos de diseño de algoritmos, comprendiendo sus fundamentos y aplicándolos en la solución de problemas de optimización mediante enfoques inspirados en la naturaleza.

Estrategias didácticas

- Resolución de ejercicios prácticos para diseñar y ajustar algoritmos metaheurísticos.
- Uso de simulaciones y codificación de algoritmos en entornos digitales.
- Análisis de casos de estudio para identificar variantes de algoritmos evolutivos y parámetros óptimos.

Criterios de desempeño	Producto esperado	Sesiones estimadas
Orden y puntualidad en la entrega de las actividades y proyectos. Capacidad de describir y justificar cada paso en la construcción de algoritmos. Razonamiento lógico y matemático en la selección y ajuste de parámetros.	Cuaderno de ejercicios, código fuente implementado en lenguaje de programación, y análisis escrito de casos de aplicación en plataformas digitales.	40
Área de conocimiento	6.1 Algorítmica	

Bloque No. II: Algoritmos de optimización inspirados en la naturaleza y funciones de penalización

Sub-competencia

Aplica técnicas de optimización basadas en comportamientos naturales y funciones de penalización para mejorar la búsqueda de soluciones en problemas complejos.

Cognitivos (Contenido)

- 1. Optimización por Colonia de Hormigas (ACO).
- 2. Optimización por Enjambre de Partículas (PSO).
- 3. Evolución Diferencial (DE).
- 4. Colonia de Abejas Artificial (ABC).
- 5. Funciones de Penalización.

Procedimentales

- El estudiante aplica algoritmos de optimización inspirados en la naturaleza como ACO, PSO, DE y ABC para resolver problemas complejos.
- Implementa funciones de penalización para manejar restricciones dentro de los modelos.
- Ejecuta, ajusta y analiza estos métodos para mejorar la eficiencia de las soluciones obtenidas.

CENTRO UNIVERSITARIO DE LOS ALTOS

División de Ciencias Agropecuarias e Ingenierías

Departamento de Ciencias Pecuarias y Agrícolas Departamento de Ingenierías

Estrategias didácticas

- Desarrollo y comparación de algoritmos como ACO, PSO, DE y ABC mediante actividades prácticas de codificación.
- Análisis de casos reales y simulaciones para comprender la influencia de las funciones de penalización.
- Discusión grupal para evaluar ventajas y limitaciones de cada técnica en diferentes contextos.

Criterios de desempeño	Producto esperado	Sesiones estimadas	
Precisión en la implementación y ajuste de los algoritmos en simulaciones. Capacidad para justificar la selección de funciones de penalización según el problema. Presentación clara y ordenada de resultados y análisis.	Código fuente de los algoritmos, reporte comparativo de resultados, y documentación que explique el uso de funciones de penalización en distintos escenarios.	40	
Área de conocimiento	6.1 Algorítmica		

Nota: 1 sesión = 1 hora:

9. Recursos requeridos

Videoproyector, computadora, compilador de Python, RStudio y Plataforma Moodle.

10. Evaluación y acreditación de la unidad de aprendizaje

Investigación	10%	
Examen Parcial	30%	
Reporte Practicas.	30%	
Participación	10%	
Proyecto integrador	20%	
Total	100%	

11. Referencias

Básica

García, J., & Melián, B. (2020). Metaheurísticas: Fundamentos y aplicaciones. Editorial Universidad de La Laguna.

Complementaria

Vasant, P., Litvinchev, I., & Marmolejo-Saucedo, J. A. (Eds.). (2021). Advances in metaheuristics: Applications in engineering systems. CRC Press.

Yang, X.-S. (2021). Nature-inspired metaheuristic algorithms (2nd ed.). Luniver Press.

Sitios web

Herrera, F. (s.f.). Introducción a los algoritmos metaheurísticos. Soft Computing and Intelligent Information Systems. https://sci2s.ugr.es/otherCourses/Metaheuristicas

12. Campo de aplicación profesional

El estudiante es capaz de desarrollar e implementar soluciones basadas en algoritmos metaheurísticos para la optimización de procesos en diversos sectores, comprendiendo su aplicación en entornos industriales, científicos y tecnológicos, así como su impacto en la mejora de sistemas complejos.

13. Perfil docente

El docente es capaz de orientar el aprendizaje teórico-práctico en algoritmos inteligentes, dominando sus fundamentos y aplicaciones. Promueve metodologías activas como talleres, simulaciones y análisis de casos, facilitando la comprensión y aplicación de los contenidos. Se mantiene en constante actualización en

CENTRO UNIVERSITARIO DE LOS ALTOS

División de Ciencias Agropecuarias e Ingenierías

Departamento de Ciencias Pecuarias y Agrícolas

Departamento de Ingenierías

el campo de la inteligencia artificial y optimización, y comunica de forma clara, fomentando un entorno colaborativo.

CENTRO UNIVERSITARIO DE LOS ALTOS

DE CIENCIAS AGROPECUARIAS E INCENIERTAS

Dr. César Aceves Aldrete

Jefe de departamento de ingenierías

Mtro. Héctor González Sánchez

Presidente de la academia