

División de Ciencias Agropecuarias e Ingenierías Departamento de Ingenierías

Identificación del curso

		F	undamentos de	e programac	ión		
	Program	a educativo			Departa	amento de adscripc	ión
Ingeniería en Computación Área de formación				Departamento de Ingenierías Tipo de Unidad de Aprendizaje			
Carga horaria					Créditos	Clave	
Teoría	40	Práctica	40	Total	80	8	15288
Mod	lalidad de Ens	eñanza - Aprendiza	aje	A		Prerrequisito	
	N	1ixta				Ninguno	
	Aca	demia			Pro	fesor responsable	
Ciencias computacionales			Claudia Islas Torres				
Elaboró / Modificó				Fecha de elaboración / modificación			
aría Obdulia (andez / Héctor Gonz Islas Torres	zález Sánchez		10) de mayo de 2024	

2. Competencias que abonan al perfil de egreso

Transversal	Disciplinar	Profesional		
Posee habilidades de aprendizaje autogestivo que le permiten incrementar sus conocimientos en distintas áreas de interés.	Demuestra conocimientos y habilidades en la aplicación de procedimientos algorítmicos en el uso de las tecnologías de la información para diseñar soluciones a problemas, analizando la idoneidad y complejidad de los algoritmos.	Diseñar sistemas de software y de información, implementando arquitecturas, infraestructuras y características de seguridad, para dar solución a problemáticas reales.		

Saberes previos

Matemáticas; Informática y Comunicación

4. Presentación de la unidad de aprendizaje

En esta unidad de aprendizaje se establecen las bases de la programación, las estructuras de datos y la programación en el lenguaje C. Asimismo, es importante destacar que las bases adquiridas en dicha unidad de aprendizaje son necesarias para implementar la parte práctica de diversas asignaturas a lo largo de la carrera.

En esta materia se establecen los principios generales del proceso de abstracción requerido para analizar y comprender una situación o un problema, para entonces elaborar una descripción amplia en términos precisos y libres de ambigüedad.

Para que una descripción así pueda ser procesada por una computadora, inicialmente se expresa en un lenguaje definido mediante reglas formales de estructuración (pseudocódigo), que deberá traducirse a algún lenguaje de programación específico.

Esta asignatura aporta, al perfil del ingeniero la capacidad para desarrollar pensamiento lógico, identificar el proceso de creación de un programa y desarrollo de algoritmos para resolver problemas. Es por ello que, el estudiante requiere de pensamiento lógico, identificar el proceso de creación de un programa y el desarrollo de algoritmos.

Objetivo de aprendizaje

Analizar problemas para crear algoritmos, pseudocódigos e implementarlos en un lenguaje de programación.

6. Competencia general de la unidad de aprendizaje

CG.CI.170 Conocimiento y aplicación de los procedimientos algorítmicos básicos de las tecnologías informáticas para diseñar soluciones a problemas, analizando la idoneidad y complejidad de los algoritmos propuestos.

7. Habilidades, valores y actitudes

Capacidad para gestionar y formular proyectos. Comprensión lectora y análisis crítico al buscar información procedente de diversas fuentes sobre las temáticas de la unidad de aprendizaje. Trabajo en equipos multi, inter y transdisciplinarios.

División de Ciencias Agropecuarias e Ingenierías Departamento de Ingenierías

Elementos de competencia

Bloque	No.	I:	Introducción a	la	programación
--------	-----	----	----------------	----	--------------

Sub-competencia El estudiante comprende los conceptos principales asociados a la programación

Cognitivos (Contenido)

- Conceptos asociados a la programación (tipos de software, programas, sistemas)
- Concepto de programación
- Paradigmas de programación
- Tipos de lenguajes de programación (comparación de lenguajes)
- Entornos de desarrollo integrado (IDE), interfaz gráfica de usuario (GUI) y los compiladores

Procedimentales

Analiza y compara los diferentes tipos de lenguajes de programación y los traductores

Estrategias didácticas

Aula invertida, ABP y aprendizaje basado en proyectos

Criterios de desempeño	Producto esperado	Sesiones estimadas		
El estudiante diseña algoritmos sencillos para resolver problemas de la vida cotidiana	Organizadores gráficos sobre la temática, reportes de información sobre la temática	6 sesiones		
Área de conocimiento	6.1 Algoritmia			

Bloque No. II: Herramientas para la resolución de problemas de programación

Sub-competencia

El estudiante comprende el proceso de construcción de un algoritmo y su relación con los lenguajes de programación

Cognitivos (Contenido)

- Fases de la resolución de un problema (Ciclo de vida del desarrollo de software clásico)
- El algoritmo
 - Los diagramas de flujo
 - El pseudocódigo
- El proceso de compilación
 - o Aplicación de algoritmos en diferentes lenguajes
- Errores típicos de la programación

Procedimentales

Desarrolla algoritmos mediante diagramas de flujo y pseudocódigo, reconoce el proceso para programar un algoritmo en un lenguaje de programación determinado

Estrategias didácticas

Aula invertida, ABP v aprendizaje basado en proyectos

Criterios de desempeño	Producto esperado	Sesiones estimadas	
El estudiante diseña algoritmos sencillos para resolver problemas de la vida cotidiana	Diagramas de flujo, pseudocódigos y primeras prácticas lenguaje C	12 sesiones	
Área de conocimiento	6.1 Algoritmia		

Bloque No. III: Fundamentos de la programación					
Sub-competencia	El estudiante es capaz de comprender los conceptos de variables y estructuras secuenciales y de control				
Cognitivos (Contenio					

División de Ciencias Agropecuarias e Ingenierías Departamento de Ingenierías

- Variables y constantes y tipos de datos básicos.
- Sentencias e instrucciones secuenciales: entrada y salida de datos
- Tipos de operadores
 - Operadores de Asignación
 - Operadores aritméticos
 - Operadores lógicos
 - Operadores relacionales o de comparación
 - Operadores de dirección
- Estructuras de control
 - Estructuras de control selectivas
 - Estructuras de control iterativas
- Palabras reservadas

Procedimentales

Resuelve problemas desarrollando algoritmos secuenciales de cualquier tipo. Representados en diagramas de flujo y pseudocódigos. Comprende el funcionamiento de las estructuras de control tanto condicionales como cíclicas.

Estrategias didácticas

Aula invertida, ABP y aprendizaje basado en proyectos

Criterios de desempeño	Producto esperado	Sesiones estimadas		
Genera pseudocódigo de manera lógica y ordenada. Demuestra mediante pruebas de escritorio el correcto funcionamiento de un algoritmo. Argumenta la pertinencia de sus algoritmos. Transfiere un algoritmo a un pseudocódigo y un diagrama de flujo	Tareas grupales como: mapas conceptuales, cuadros comparativos de las estructuras de control. Pseudocódigo y desarrollo de código en un lenguaje de programación	12 sesiones		
Área de conocimiento	6. Programación e Ingeniería de software			

Bloque No. IV: Prácticas de programación

Sub-competencia El estudiante aplica sus aprendizajes sobre datos y estructuras secuenciales y de control Cognitivos (Contenido)

Estructuras de programación

Procedimentales

Resuelve problemas aplicando sus conocimientos sobre algoritmos. Representados en diagramas de flujo y pseudocódigos. Comprende el funcionamiento de las estructuras de control tanto condicionales como cíclicas.

Estrategias didácticas

Aula invertida, ABP y aprendizaje basado en proyectos

Criterios de desempeño	Producto esperado	Sesiones estimadas
Genera pseudocódigo de manera lógica y ordenada. Transfiere un algoritmo a un pseudocódigo y un diagrama de flujo Presenta el código desarrollado lenguaje C y Python	Tareas grupales como: mapas conceptuales, cuadros comparativos de las estructuras de control. Pseudocódigo y desarrollo de código en un lenguaje de programación	12 sesiones
Área de conocimiento	6. Programación e Ingeniería de software	

9. Recursos requeridos

Computadora, bibliográfica recomendada, vídeos y plataforma educativa

División de Ciencias Agropecuarias e Ingenierías Departamento de Ingenierías

. Evaluación y acreditación de la unidad de aprendizaje

Actividades de documentación	15%			
Tareas y prácticas en laboratorio	50%			
Evaluaciones parciales	30%			
Participación en clase	5%			

11. Referencias (APA)

Básica

Sznajdleder P. (2011). Algoritmo a fondo con implementaciones en C y Java. Alfa Omega, 1.ª edición México. 553 Lee R. (2007). Introducción al diseño y análisis de algoritmos. MC Graw Hil 1.ª edición, México, pp736 López G. (2009). Análisis y Diseño de Algoritmos, Alfa Omega, 1.ª edición, México. Joyanes L. (2008). Fundamentos de programación, 4ta edición, México

Complementaria

Pinales Delgado, F. J. y Velázquez Amador C. E. (2014). Problemario de algoritmos resueltos Con diagramas de flujo y pseudocódigo. Universidad Autónoma de Aguascalientes. Camacho, S. (1996). Análisis de algoritmos. México: U.N.A.M., E.N.E.P. Acatlán

Sitios web

C++ Tutorial. (n.d.). Retrieved December 15, 2021, from https://www.w3schools.com/cpp/default.asp

12. Campo de aplicación profesional

Demuestra conocimientos y habilidades en la aplicación de procedimientos algorítmicos en el uso de las tecnologías de la información para diseñar soluciones a problemas, analizando la idoneidad y complejidad de los algoritmos

13. Perfil docente

El docente de esta materia deberá ser un profesionista conformación en las áreas de la computación, comunicaciones o informática; capaz de motivar a la investigación y creación de conformación de conformación de conformación en las áreas de la computación, comunicaciones o informática; capaz de motivar a la investigación y creación de conformación en las áreas de la computación, comunicaciones o informática; capaz de motivar a la investigación y creación de conformación en las áreas de la computación, comunicaciones o informática; capaz de motivar a la investigación y creación de conformación en las áreas de la computación, comunicaciones o informática; capaz de motivar a la investigación y creación de conformación en las áreas de la computación, comunicaciones o informática; capaz de motivar a la investigación y creación de conformación en las áreas de la computación, comunicaciones o informática; capaz de motivar a la investigación y creación de conformación de conformación

CENTRO UNIVERSITARIO DE LOS ALFOS

TOTAL DE CIENCIAS AGROPECUARIAS E INGENIER

DEPARTAMENTO DE INGENIERÍAS

Dr. Alejandro Pérez Larios Jefe de Departamento de ingenierías Mtro. Fernando Cornejo Gutiérrez Presidente de academia